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Agenda

• Discussion of quantitative systems pharmacology 
(QSP) and mechanistic QSP platform models

• QSP at Bristol-Myers Squibb

• Melanoma immuno-oncology QSP platform

•Melanoma I-O QSP platform biological scope

•Pathway-level results in a virtual patient (VP)

• Example with virtual populations (VPops)

• Software & infrastructure considerations
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A multidisciplinary science that takes a mathematical 
approach to pharmaceutical R&D by integrating 
methodologies from pharmaceutical sciences, 
engineering, and systems biology.

Quantitative (and) Systems Pharmacology

Sorger, P.K., et al. (2011) “Quantitative and systems pharmacology in the post-genomic era: new approaches to 

discovering drugs and understanding therapeutic mechanisms.” An NIH White Paper by the QSP Workshop 

Group,
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Patient measures 
(output)

• Molecular readouts
• Drug and mediator 

concentrations
• Cellular readouts
• Cell counts
• Activation

• Tissue damage and 
function

Parameters (input)
• Molecular
• Affinity
• Half-life
• Transport or partitioning
• Signaling
• PK

• Cellular
• Life cycle differentiation
• Motility and secretion
• Effects of mediators and 

interaction
• Tissue and organ-level 

responses
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Initial conditions 
(input)

• Concentrations
• Cell populations
• Tissue state
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•QSP platform models 
mechanistically link target 
modulation to disease outcome

•System focus: can create the link 
before trial data are available for 
a new intervention/therapy

•Mechanistic (biomarker) and 
outcome data are used to 
calibrate the model for related 
therapies or to evaluate model 
performance

•Models are refined as additional 
data are available

•Potentially resource-intensive 
but broad application

Schmidt, B. J., et al. (2013). "Mechanistic systems modeling to guide drug 

discovery and development." Drug Discov Today 18(3-4): 116-127

QSP platform model scope



QSP at BMS

• 6 Dedicated QSP modelers in Quantitative 
Clinical Pharmacology group (we’re hiring!)

• Substantial & continued investment in platform 
development and approaches
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Oncology & Immuno-Oncology

 Melanoma I-O Platform

 Antibody-Drug Conjugate 
Platform

 Physiologically-Based Tumor 
Receptor Occupancy

Immunoscience

 Rheumatoid Arthritis

 Immunogenicity

Cardiovascular Disease

 Heart Failure

 Coagulation/Thrombosis

Fibrosis

 Nonalcoholic Steatohepatitis

Additional Platform Resources

 Diabetes/Metabolic Diseases



Melanoma immuno-oncology platform 
biological scope: cancer-immunity cycle
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Chen, D. S. and I. Mellman (2013). "Oncology meets immunology: the 

cancer-immunity cycle." Immunity 39(1): 1-10.

RightsLink License 3814541352883.



Melanoma immuno-oncology platform: 
staged development
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Pilot

(Stage 1)

1.Map 

development

• Lesion

• Blood

• Cells

• Mediators

• Interactions

• Therapies

2.Equations

3.Parameterize, 

calibrate one VP

1.Map development

• Lymph node

• Tumor lymphoid structures

• Angiogenesis

• Metastatic potential

• Cytokine regulation expansion

• Additional cell types

• Additional therapeutic target pathway modulation

2.Equations

3.Parameterize

4.Calibrate a set of VPs

5 months 18 months

• Develop mechanistic hypotheses

• Starting point for virtual populations

• Compare options for combination therapies

Complete cancer-immunity cycle

(Stage 2)



Transport

Melanoma immuno-oncology pilot project: 
cells, cytokines, and biomarkers
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Blood/Plasma: circulating immune cells, 

cytokines, chemokines, therapies, RO

Tumor:

CD4: naïve, Th, Th1, Th2, Th17, Treg, TEM

CD8: naïve, CTL, TEM

NK

B

DC

M1/M2 Macrophages

MDSC

Cancer

Soluble mediators and markers: IL1, IL2, IL4, IL6, IL7, 

IL10, IL12, IL15, IL17, IL21, IL23, IFNg, TGFb, GMCSF, 

IDO, Chemokines, LDH, tumor associated antigens, 

antibodies, therapy effects

Cell associated markers: MHC, targets, ligands, 

FoxP3, Granzymes

Lesion

Size

149 species

249 reactions

1014 parameters

Development tool:

MATLAB SimBiology



Representation of the cancer-immunity cycle:
immune cell trafficking and tumor infiltration
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•I-O therapy 
administered in 
example simulation to 
enable an effective 
immune response

•Pool of immune cells 
in blood represents 
production of immune 
cells throughout the 
body (e.g., lymph 
nodes, bone marrow)

•Tumor infiltration is 
regulated by 
chemokines released 
within the tumor 
microenvironment



Representation of the cancer-immunity cycle:
release of cancer antigens
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•Dead cancer cells 
release components, 
that can can serve as 
tumor-associated 
antigens (TAA)



Representation of the cancer-immunity cycle:
cancer antigen presentation
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•Released TAA in 
tumor can be 
internalized, 
processed, and 
presented by dendritic
cells, macrophages, 
and B cells within the 
tumor or lymph node 
(stage 2)

•The level of TAA 
presented per APC 
contributes to the 
degree of T cell 
activation



Representation of the cancer-immunity cycle:
cancer cell recognition (1 of 3)
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•Presentation of TAA can 
activate CD4+ and CD8+ T 
cells



Representation of the cancer-immunity cycle:
cancer cell recognition (2 of 3)
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•Presentation of TAA can 
activate CD4+ and CD8+ T 
cells

•CD8+ T cells can directly 
bind to cancer cells 
presenting MHC-TAA 
complexes

• APC are protected from 
CD8+ CTL-mediated killing

• Cancer cells are killed by 
activated CD8+ CTL



Representation of the cancer-immunity cycle:
cancer cell recognition (3 of 3)
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•Presentation of TAA can 
activate CD4+ and CD8+ T 
cells

•CD8+ T cells can directly 
bind to cancer cells 
presenting MHC-TAA 
complexes

• APC are protected from 
CD8+ CTL-mediated killing

• Cancer cells are killed by 
activated CD8+ CTL

•Natural killer (NK) cells 
detect downregulated MHC I 
expression on the cancer 
cells

• This leads to NK cell 
activation and direct killing 
of the cancer cells



Representation of the cancer-immunity cycle:
cancer cell killing
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•Activated CD8+ T cells 
and NK cells carry out 
additional killing of 
the cancer cells

•Activation and 
cytokines contribute 
to exhaustion of CD8 
T-cells and 
upregulation of 
exhaustion markers



Therapy A proximal PD
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•Two therapies implemented

•Typical values used for PK

•Multiple effects of 
engagement of target A

• Free target A ligand to 
bind to a competing 
receptor

• Target A is expressed on T 
regs: antibody-dependent 
cell-mediated cytotoxicity



Pilot VP: response to therapy A
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Therapy B proximal PD

•Target B receptor occupancy is 
shown following infusion

• Therapy B

• Target B ligand 1

• Target B ligand 2

•Simulations account for affinity 
as well as expression

18



Pilot VP: response to therapy B
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Pilot VP: lesion response to combination 
therapies
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•We have taken the same VP and 
tested different immuno-
oncology therapies

•Note the simulated increased 
response for the combination 
relative to monotherapies at the 
same concentrations

•Will add additional feedback 
mechanisms in stage 2

•Alternate VPs will facilitate 
exploring phenotypes that may 
have greater benefit from the 
combination

•Develop virtual populations: 
increase confidence in 
distribution of response 
phenotypes

Pilot VP

Untreated

Therapy A Therapy B

Combination



Stage 2 expansion: 
cells, cytokines, and other biomarkers
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Transport

Blood/Plasma

Pilot: circulating immune cells, cytokines, chemokines, RO, therapy A and B 

Stage 2: expand immune cells, 3 more therapies (checkpoint inhibitors, agonists)

Tumor & lymph node

Pilot cell types: CD4: Naïve, Th, Th1, Th2, Th17, Treg, TEM; CD8: Naïve, CTL, TEM; NK, B, DC, 

M1/M2 Macrophages, MDSC, Cancer

Stage 2 cell types: CD4: TFH , TCM; CD8: TCM; B: Naïve, Plasma (short & long lived), Memory;  

VEC, LEC, CAF, pDC, N1/N2 Neutrophils, TIE2-Expressing Monocytes, Lymph node fibroblasts

Pilot mediators and markers (21): IL1, IL2, IL4, IL6, IL7, IL10, IL12, IL15, IL17, IL21, IL23, IFNg, 

TGFb, GMCSF, IDO, Chemokines, LDH, tumor associated antigens, therapy A and B

Stage 2 mediators and markers (39): IL18, IFN1, TNFalpha, CXCL8, CXCL9, CXCL12, CCL4, 

CCL2, CCL5, CCL20, CCL21, CCL22, MCSF, PGE2, ICAM1, VEGFA, VEGFC, Ang2, ECM, MMP, 

new therapies

Pilot cell associated markers: MHC, target-associated markers, FoxP3, granzymes

Stage 2 target-associated cell markers

Some of the new processes in Stage 2: hypoxia, vessel and ECM density (metastatic 

potential), cancer and immune cell migration to the lymph node, adaptive immune response in 

the lymph node



Trial results for a virtual population: an 
example in rheumatoid arthritis

•A cohort of 1,206 VPs was 
developed algorithmically

•Cohort VPs all exhibit 
feasible baseline biomarkers 
and therapeutic responses

•Many virtual populations 
(768) were created  

•Composite goodness-of-fit 
criterion was acceptable for 
each virtual population

•Agreement for one virtual 
population across multiple 
trials is illustrated

•Virtual population calibration 
gives a basis for population 
response extrapolation with 
new therapies 
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p=0.65(0.54)

p =0.28(0.68)

p =0.56(0.99)

p =0.75(0.66)

p =0.10(0.99)

p =0.03(0.99)

p =0.40(0.56)

p =0.24(0.69)

Schmidt, B. J. et al. (2013). "Alternate virtual populations elucidate 

the type I interferon signature predictive of the response to rituximab 

in rheumatoid arthritis." BMC Bioinformatics 14: 221.

Originally published by Biomed Central.

p = 0.20 p = 0.78 p = 0.55

p = 0.73

p =0.21 p =0.64

p =0.49 p =0.62



User Interface

Virtual  Systems Pharmacology
(ViSP) HPC platform
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Ermakov, S., et al. (2014). “Virtual Systems Pharmacology 

(ViSP) software for mechanistic system-level model 

simulations.” Front Pharmacol. 5: p. 232.

•QSP software and 
infrastructure 
development are 2-fold:

• Provide tools and 
interfaces for non-
modelers to access 
simulations (left)

• Provide computing 
resources for 
computationally-
intensive models and 
algorithms



Take home 
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• Mechanistic quantitative systems pharmacology (QSP) 
modeling platforms can address a variety of questions

•Elucidate and predict efficacy and biomarker trends

•Evaluate combinations

•Dosing strategy

• Modeling platforms are non-trivial

•Require foresight and planning

•Continual development, re-use

• Software & infrastructure considerations

•May require customized development

•Virtual populations can be resource hungry

•Cloud computing resources
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Backup
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Therapy implementation with the VP

•We have taken the same 
VP and tested different 
immuno-oncology 
therapies

•Lesion size is calculated 
based on number of cancer 
and immune cells in the 
simulated lesion

27

Pilot VP

Untreated Therapy A Therapy B



Melanoma immuno-oncology platform: 
development team
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•Cross-function team of drug 
development scientists 

•Leverage external resources 
to accelerate model 
development

• Information-intensive

• Preclinical and clinical data 
sets

• Over 500 publications for 
pilot

PK/PD

Scientists
Biomarker

Scientists

Modeling

Engineers

Information

Technologists

Data

Programmers
BiologistsClinicians
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Melanoma immuno-oncology pilot project: 
processes

Production 

and 

clearance of 

blood cell 

populations 

Blood 

marker Plasma proteins and 

therapeutics

Binding 

to blood 

targetsRecruitment to lesion Molecular 

transport 

Tumor-associated 

antigen release 

and uptake

NK and CD8-mediated 

cancer cell killing 

Soluble species production

Activation

Polarization Exh-

austion

Drug binding

and mechanism

Additional 

markers
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Treatment/Simulation Measure Feasible Range for VP
Untreated (Baseline RA) Plasma C-Reactive Protein <255 mg/L

Synovial Tissue Volume Occupied by Cells <0.95 (Fraction)

Synovial Sublining B Cell Density 0.48 - 37.92 (x106 cells/mL)

Synovial Sublining T Cell Density 0.32 - 408.48 (x106 cells/mL)

CD4: CD8 T Cells 1-3 (ratio)

Circulating CD28-/CD4+ T Cells <0.61 (fraction of CD4+ T Cells)

Circulating Th17 Cells <0.85 (fraction of CD4+ T Cells)

Average Synovial NK Cell Density <6 (x106 cells/mL)

Synovial Sublining Plasma Cell Density 9.28 - 119 (×106 cells/mL)

Synovial Macrophage Density 18.16 - 189.36 (×106 cells/mL)

Synovial Lining FLS Density 18 - 104.1 (×106 cells/mL)

Cartilage Degradation Rate 0.1 - 1.5 (mm/yr)

Bone Metabolism Rate <-1 - 1 (x10-6 mL/hr)

Serum TNFa Level <3.6 (ng/mL)

Serum IL-1Ra 0.1 - 5.2 (ng/mL)

Serum COMP 2.6 - 32 (µg/mL)

Serum VEGF 0.025 - 5.5 (ng/mL)

Serum IL-1 <1.03 (ng/mL)

Serum Free and Complexed IL-6 <52 (ng/mL)

Serum Total IL-6R <0.0185 - 218 (ng/mL)

Serum Total SGP-130 50 - 1068 (ng/mL)

NSAID, 27.5 ng/ml, 1 year Improvement in JSN Progression Rate -25% to 50%

Improvement in BES Progression Rate -25% to 50%

Improvement in ACR-N Score >-10%

Methotrexate, 14.2mg/wk, 1 year Plasma C-Reactive Protein <255 mg/L

Synovial Tissue Volume Occupied by Cells <0.95 (Fraction)

Improvement in JSN Progression Rate >-25%

Improvement in BES Progression Rate >-25%

Improvement in ACR-N Score >-25%

Methotrexate, 16.5mg/wk, 1 year Same feasibility constraints as MTX 14.2

Adalimumab, 40 mg s.c., and MTX, 1 year, following 1 year on MTX Same feasibility constraints

Rituximab, 1000 mg, and MTX, 6 months, following 1 year on MTX Same feasibility constraints

Rituximab, 1000 mg, and MTX, 1 year, following 1 year on MTX Same feasibility constraints

Tocilizimumab, 4 mg/kg, and MTX, 1 year, following 1 year on MTX Same feasibility constraints

Tocilizimumab, 8 mg/kg, and MTX, 1 year, following 1 year on MTX Same feasibility constraints

Anakinra, 100 mg s.c., and MTX, following 1 year on MTX Same feasibility constraints

Infliximab, 3 mg/kg, and MTX, 1 year, following 1 year on MTX Same feasibility constraints

Infliximab, 10 mg/kg, and MTX, 1 year, following 1 year on MTX Same feasibility constraints

• 21 baseline measures of 

pathology 

• 53 response measures on 10 

therapeutic interventions



Alternate VPs simulate variability: example 
from a rheumatoid arthritis study (1 of 2)
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VP1 P1

•Alternate VPs can be created to form 
a VP cohort

•All VPs must meet feasibility criteria

• Responses to therapies are 
generally consistent with patient 
class

• Pathophysiology (cell counts, 
concentrations) feasible and in 
agreement with literature

VP2 P2
VP3 P3
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Alternate VPs simulate variability: example 
from a rheumatoid arthritis study (2 of 2)
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VP2 P2
VP3 P3

VP1 P1

•Alternate VPs can be created to form 
a VP cohort

•All VPs must meet feasibility criteria

• Responses to therapies are 
generally consistent with patient 
class

• Pathophysiology (cell counts, 
concentrations) feasible and in 
agreement with literature

•Once a cohort of VPs is created, they 
may not match trial statistics

•“Prevalence” weights can be 
optimized to improve the match, 
giving a virtual population

•Algorithms have been developed 
optimizing prevalence weights

All wi = 1/3

Optimize wi



Therapy A PK
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•Patient data are shown for 
comparison

•Previously reported 
pharmacokinetic parameters 
were used for the VP



Therapy B PK

•Patient data are shown for 
comparison

•Previously reported PK 
parameters were used for the 
VP
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